Multiple classifier systems for robust classifier design in adversarial environments

نویسندگان

  • Battista Biggio
  • Giorgio Fumera
  • Fabio Roli
چکیده

Pattern recognition systems are increasingly being used in adversarial environments like network intrusion detection, spam filtering and biometric authentication and verification systems, in which an adversary may adaptively manipulate data to make a classifier ineffective. Current theory and design methods of pattern recognition systems do not take into account the adversarial nature of such kind of applications. Their extension to adversarial settings is thus mandatory, to safeguard the security and reliability of pattern recognition systems in adversarial environments. In this paper we focus on a strategy recently proposed in the literature to improve the robustness of linear classifiers to adversarial data manipulation, and experimentally investigate whether it can be implemented using two well known techniques for the construction of multiple classifier systems, namely, bagging and the random subspace method. Our results provide some hints on the potential usefulness of classifier ensembles in adversarial classification tasks, which is different from the motivations suggested so far in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intelligent and Robust Genetic Algorithm Based Classifier

The concepts of robust classification and intelligently controlling the search process of genetic algorithm (GA) are introduced and integrated with a conventional genetic classifier for development of a new version of it, which is called Intelligent and Robust GA-classifier (IRGA-classifier). It can efficiently approximate the decision hyperplanes in the feature space. It is shown experime...

متن کامل

Classifier Ensemble Framework: a Diversity Based Approach

Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...

متن کامل

Fault diagnosis in a distillation column using a support vector machine based classifier

Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...

متن کامل

Synthesizing Robust Adversarial Examples

Neural network-based classifiers parallel or exceed human-level accuracy on many common tasks and are used in practical systems. Yet, neural networks are susceptible to adversarial examples, carefully perturbed inputs that cause networks to misbehave in arbitrarily chosen ways. When generated with standard methods, these examples do not consistently fool a classifier in the physical world due t...

متن کامل

Security Evaluation of Pattern Classifiers in Adversarial Environments

Pattern classification systems are commonly used in adversarial applications, like biometric authentication, network intrusion detection, and spam filtering, in which data can be purposely manipulated by humans to undermine their operation. As this adversarial scenario is not taken into account by classical design methods, pattern classification systems may exhibit vulnerabilities, whose exploi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Machine Learning & Cybernetics

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2010